

ARL

Effect of frequency offset on orthogonality of loosely synchronous codes

Gunjan Verma, Fikadu Dagefu, Brian Sadler, Predrag Spasojevic*

Wincomm-Europe 2017

May 17, 2017

UNCLASSIFIED

U.S. ARMY RDECOM®

Motivation

- Reliable, ad hoc, low-power, multi-user communication in cluttered environments among near-ground agents
 - Synchronization challenges: intermittent GPS access, frequency offset, no power control; tight time/frequency synchronization particularly difficult to achieve with software-defined radios
 - Solution: Loosely synchronous (LS) codes; enable minimal multiple access interference (MAI) even in weakly sychronized regimes and/or power mismatch
- Exploit various frequency bands (e.g., low VHF, UHF) as part of a multi-wavelength hybrid system for robust low power communications in Army-relevant scenarios
 - Near-ground low frequency channels provide superior penetration, reduced multipath, and much smaller frequency offsets than at microwave
 - Recent advance in miniature antennas enable practicality

Background on LS codes

- Typical DS-CDMA codes have non-zero (auto/cross) correlation at nonzero lag
 - Gold, Kasami, Walsh

U.S. ARMY RDECOM®

- Challenges: ISI/MAI limited and near/far problem
 - Conventional solution: power-control, interference cancellation, multi-user detectors (MUD);
 - Infrastructure-dependent; costly/power hungry
- Exist codes with a zero correlation zone (ZCZ)
 - off-peak aperiodic correlation = 0
 - Within ZCZ: zero ISI and zero MAI ⇒ single-user-like communications performance without MUD

Codes with ZCZ

ARĹ

Code i

Code j at -1 chip lag

Code k at +2 chip lag

- ZCZ: A set of lags {-L, -L+1, ..., L-1, L} for which the correlation is exactly zero. For autocorrelation, 0 ∉ ZCZ.
- Define: C = a set of codes having a ZCZ. |L|=max value in ZCZ. M = code length. |C|= size of code family.
- A bound from [1] establishes that for any C:
 - $|C| * (|L|+1) \le M$
 - I.e., for fixed M, number of codes with ZCZ is limited

[1] P. Z. Fan, "Spreading sequence design and theoretical limits for quasisynchronous CDMA systems," EURASIP J. Wireless Comm. and Networking, vol. 2004, no. 1, pp. 19–31, 2004.

Codes with ZCZ

- For ad hoc networks, assume only intermittent time synchrony
 - E.g., nodes synchronize approximately every 10 s
 - Exists on order of 10 μs time uncertainty among nodes
 - Clock drift (1 μ s / s) + processing delay of sync signal
- An example: BW= 1.25 MHz, 10 µs ⇒ |L|=13 for a single-carrier system
 - For |C|=16, code length M > 200
 - Number of codes |C|=4, for M=64

Codes with ZCZ

Challenges:

Problem 1: Large |L| forces one to

U.S. ARMY RDECOM®

- increase code length M (for |C|=16, M > 200)
- decrease number of codes |C| (for M=64, |C| = 4)
- Problem 2: Extending the codes in time ⇒ more susceptible to orthogonality loss due to frequency offset

 $\sum x(n) \cdot y(n+l) = 0$

Freq offset

∑x(n)·y(n+l)e^{j· ∆w· (n+l)}≠0

Approach and analysis:

- Use multiple carriers
 - E.g., with BW ≅1.25 MHz, 8 subcarriers, one can use a ZCZ with
 - |L|=3 chips which covers ≅ 20 µs
 - − $|L|=3 \Rightarrow LS$ code family with length 67 codes can support 16 users
- The effect of frequency offset is investigated for various families of codes

Construction of LS Codes

General construction technique depends on choice of

- 1. Complementary sequences / mates
 - \rightarrow Form code building blocks
 - \rightarrow Ensure orthogonality at non-zero lags within ZCZ
- 2. Hadamard matrix
 - \rightarrow Ensures orthogonality at zero lag
- 3. Zero gaps
 - a. Prevent intersymbol interference
 - b. Prevent overlap between mates

[2] S. Stanczak et Al. . Are LAS-codes a miracle?. in Global Telecommunications Conference, 2001. GLOBECOM'01. IEEE (Vol. 1, pp. 589-593). IEEE.

Example of 4 code ZCZ family with ZCZ duration=z

The Nation's Premier Laboratory for Land Forces

U.S.ARM

- The above procedure is parameterized by:
 - Choice of complementary sequence (CS)
 - Method of interleaving complementary sequences
 - Choice of Hadamard matrix
- Each choice results in different instances of a ZCZ code family
- Do these instances differ in terms of the frequency offset induced orthogonality loss?

Notations

$$\mathbf{R}_{k,l} = \sum_{n=0}^{L-1} \mathbf{c}_k(n) \ \mathbf{c}_l^*(n) e^{-j\omega n}$$

 The cross-correlation between codes c_k and c_l in the presence of frequency offset w. Codes are of length L.

$$\rho(\mathcal{S}, \omega, q) \triangleq \left(\frac{1}{2\binom{K}{2}} \sum_{k} \sum_{l, l \neq k} |\mathbf{R}_{k, l}|^q\right)^{\frac{1}{q}}$$

 The "q-norm" cross-correlation, averaged across all codes in set S, at frequency offset w. Indicies k and I range over all users in the system and K is the total number of users.

u.s. army RDECON

Theorem 1: Suppose that

- 1. Code elements are of constant modulus
- 2. Number of users equals code length
- 3. On average, all active users have same transmit power
- \rightarrow Then, $\rho(S,w,2)$ ("2-norm") is *independent* of code choice S

Average MUI for Hadamard codes of various lengths shown in legend. X-axis: normalized frequency offset (frequency times chip time). Y axis: 10 $\log_{10}(\rho(S, W=2\pi f, 2)^2 / L^2)$, which is the average MUI (dB) presented by a single interferer on a link of interest. In absence of frequency offset, MUI (dB) is - ∞ .

ZCZ Code Simulation Study

- Randomly generate 1000 Hadamard matrices H
- For each H and each valid CS interleaving scheme C
 - \circ $\,$ Construct the ZCZ code family using H and C $\,$
 - 16 total codes

RDECOM®

- each of length 64+3
- For each fixed frequency offset
 - Find all pair-wise cross correlations at all shifts within the ZCZ
 - Compute $\rho(S, w, 1)$, $\rho(S, w, 2)$, and $\rho(S, w, \infty)$

For each norm, return the best and worst found families

U.S. ARMY RDECOM®

- ZCZ codes are not constant modulus, so Theorem 1 does not apply directly
- However, for small z, most elements are non-zero, so we expect it to approximately hold

Average MUI for best and worst LS codes of length 64+3.. X-axis: normalized frequency offset (frequency times chip time). Y axis: 20 log10(ρ (S,W=2 π f,2) / L) presented by a single interferer on a link of interest, normalized by code energy. Best and worst curves separated by 0.8 dB.

The Nation's Premier Laboratory for Land Forces

U.S.ARM

Orthogonality loss due to frequency offset (ZCZ codes)

U.S. ARMY RDECOM®

Y axis: 20 $\log_{10}(\rho(S,w=2\pi f,1) / L)$ $\rho(S,w,1)$: at $\log_{10}(f)=-3$, difference of ~3.7 dB $\rho(S,w,\rho(S,w,\infty)$: at $\log_{10}(f)=-3$, difference of ~5.6 dB $\rho(S,w,1)$: at $\log_{10}(f)=-3$, difference of ~1.2 dB

Conclusions

- L2 norm: all discovered families are nearly identical
 - useful for Gaussian interference process, i.e., when there are a large numbers of users
 - In this case, CLT can be invoked, and L2 norm captures variance
- For small numbers of users (e.g. in LS codes), other norms may be more relevant
 - CLT cannot be invoked
 - Power of interferers may follow other laws, e.g. exponential
- L1 norm: nearly 4 dB difference
- L-∞ norm: nearly 6 dB difference
 - captures worst-case interference a single interferer can provide

Conclusions (Cont'd)

- We considered only real-valued complementary sequences, real-valued Hadamard matrices, and fully loaded systems (number of users = code length)
 - For LS codes, using complex complementary sequences/Hadamard matrices may offer advantages
- For Hadamard codes, if number of users < code length, then Theorem 1 does not hold
 - Good news: some codes are better than others
 - Essentially, one trades off a smaller number of users for codes with better performance with respect to ρ(S,w,2)

BACKUP

The Nation's Premier Laboratory for Land Forces

UNCLASSIFIED

Motivation

- Tactical mobile ad hoc network performance limited by adverse propagation & lack of infrastructure
- Exploit various frequency bands (e.g., low VHF, UHF) as part of a multi-wavelength hybrid system for robust low power communications in Army relevant scenarios
 - Near-ground low frequency channels provide superior penetration and reduced multipath
 - Recent advance in miniature antennas and channels studies

Potential for persistent low power, low complexity Multi-user communications and Networking in austere infrastructure poor environments

100 MHz

Conventional vs. Miniature antennas

